18 research outputs found

    Sensing and Automation Technologies for Ornamental Nursery Crop Production: Current Status and Future Prospects

    Get PDF
    The ornamental crop industry is an important contributor to the economy in the United States. The industry has been facing challenges due to continuously increasing labor and agricultural input costs. Sensing and automation technologies have been introduced to reduce labor requirements and to ensure efficient management operations. This article reviews current sensing and automation technologies used for ornamental nursery crop production and highlights prospective technologies that can be applied for future applications. Applications of sensors, computer vision, artificial intelligence (AI), machine learning (ML), Internet-of-Things (IoT), and robotic technologies are reviewed. Some advanced technologies, including 3D cameras, enhanced deep learning models, edge computing, radio-frequency identification (RFID), and integrated robotics used for other cropping systems, are also discussed as potential prospects. This review concludes that advanced sensing, AI and robotic technologies are critically needed for the nursery crop industry. Adapting these current and future innovative technologies will benefit growers working towards sustainable ornamental nursery crop production

    Towards Modelling Trust in Voice at Zero Acquaintance

    Get PDF
    Trust is essential in many human relationships, especially where there is an element of inter-dependency. However, humans tend to make quick judgements about trusting other individuals, even those met at zero acquaintance. Past studies have shown the significance of voice in perceived trustworthiness, but research associating trustworthiness and different vocal features such as speech rate and fundamental frequency (f0) has yet to yield consistent results. Therefore, this paper proposes a method to investigate 1) the association between trustworthiness and different vocal features, 2) the vocal characteristics that Malaysian ethnic groups base their judgement of trustworthiness on and 3) building a neural network model that predicts the degree of trustworthiness in a human voice. In the method proposed, a reliable set of audio clips will be obtained and analyzed with SoundGen to determine the acoustical characteristics. Then the audio clips will be distributed to a large group of untrained respondents to rate their degree of trust in the speakers of each audio clip. The participants will be able to choose from 30 sets of audio clips which will consist of 6 audio clips each. The acoustic characteristics will be analyzed and com-pared with the ratings to determine if there are any correlations between the acoustic characteristic and the trustworthiness ratings. After that, a neural network model will be built based on the collected data. The neural network model will be able to predict the trustworthiness of a person’s voice. Keywords—prosody, trust, voice, vocal cues, zero acquaintance

    Deep Learning in Controlled Environment Agriculture: A Review of Recent Advancements, Challenges and Prospects

    No full text
    Controlled environment agriculture (CEA) is an unconventional production system that is resource efficient, uses less space, and produces higher yields. Deep learning (DL) has recently been introduced in CEA for different applications including crop monitoring, detecting biotic and abiotic stresses, irrigation, microclimate prediction, energy efficient controls, and crop growth prediction. However, no review study assess DL’s state of the art to solve diverse problems in CEA. To fill this gap, we systematically reviewed DL methods applied to CEA. The review framework was established by following a series of inclusion and exclusion criteria. After extensive screening, we reviewed a total of 72 studies to extract the useful information. The key contributions of this article are the following: an overview of DL applications in different CEA facilities, including greenhouse, plant factory, and vertical farm, is presented. We found that majority of the studies are focused on DL applications in greenhouses (82%), with the primary application as yield estimation (31%) and growth monitoring (21%). We also analyzed commonly used DL models, evaluation parameters, and optimizers in CEA production. From the analysis, we found that convolutional neural network (CNN) is the most widely used DL model (79%), Adaptive Moment Estimation (Adam) is the widely used optimizer (53%), and accuracy is the widely used evaluation parameter (21%). Interestingly, all studies focused on DL for the microclimate of CEA used RMSE as a model evaluation parameter. In the end, we also discussed the current challenges and future research directions in this domain

    Water Resources Management Strategies for Irrigated Agriculture in the Indus Basin of Pakistan

    No full text
    Agriculture of Pakistan relies on the Indus basin, which is facing severe water scarcity conditions. Poor irrigation practices and lack of policy reforms are major threats for water and food security of the country. In this research, alternative water-saving strategies are evaluated through a high spatio-temporal water footprint (WF) assessment (1997–2016) for the Punjab and Sindh provinces, which cover an irrigated area of 17 million hectares in the Indus basin of Pakistan. The SPARE:WATER model is used as a spatial decision support tool to calculate the WF and establish alternative management plans for more sustainable water use. The average water consumption (WFarea) is estimated to 182 km3 yr−1, composed of 75% blue water (irrigation water from surface water and groundwater sources), 17% green water (precipitation) and 8% grey water (water used to remove soil salinity or dilute saline irrigation water). Sugarcane, cotton, and rice are highly water-intensive crops, which consume 57% of the annual water use. However, WFarea can be reduced by up to 35% through optimized cropping patterns of the existing crops with the current irrigation settings and even by up to 50% through the combined implementation of optimal cropping patterns and improved irrigation technologies, i.e., sprinkler and drip irrigation. We recommend that the economic impact of these water-saving strategies should be investigated in future studies to inform stakeholders and policymakers to achieve a more sustainable water policy for Pakistan

    Sensing and Automation Technologies for Ornamental Nursery Crop Production: Current Status and Future Prospects

    No full text
    The ornamental crop industry is an important contributor to the economy in the United States. The industry has been facing challenges due to continuously increasing labor and agricultural input costs. Sensing and automation technologies have been introduced to reduce labor requirements and to ensure efficient management operations. This article reviews current sensing and automation technologies used for ornamental nursery crop production and highlights prospective technologies that can be applied for future applications. Applications of sensors, computer vision, artificial intelligence (AI), machine learning (ML), Internet-of-Things (IoT), and robotic technologies are reviewed. Some advanced technologies, including 3D cameras, enhanced deep learning models, edge computing, radio-frequency identification (RFID), and integrated robotics used for other cropping systems, are also discussed as potential prospects. This review concludes that advanced sensing, AI and robotic technologies are critically needed for the nursery crop industry. Adapting these current and future innovative technologies will benefit growers working towards sustainable ornamental nursery crop production

    Opportunities and Possibilities of Developing an Advanced Precision Spraying System for Tree Fruits

    No full text
    Reducing risk from pesticide applications has been gaining serious attention in the last few decades due to the significant damage to human health, environment, and ecosystems. Pesticide applications are an essential part of current agriculture, enhancing cultivated crop productivity and quality and preventing losses of up to 45% of the world food supply. However, inappropriate and excessive use of pesticides is a major rising concern. Precision spraying addresses these concerns by precisely and efficiently applying pesticides to the target area and substantially reducing pesticide usage while maintaining efficacy at preventing crop losses. This review provides a systematic summary of current technologies used for precision spraying in tree fruits and highlights their potential, briefly discusses factors affecting spraying parameters, and concludes with possible solutions to reduce excessive agrochemical uses. We conclude there is a critical need for appropriate sensing techniques that can accurately detect the target. In addition, air jet velocity, travel speed, wind speed and direction, droplet size, and canopy characteristics need to be considered for successful droplet deposition by the spraying system. Assessment of terrain is important when field elevation has significant variability. Control of airflow during spraying is another important parameter that needs to be considered. Incorporation of these variables in precision spraying systems will optimize spray decisions and help reduce excessive agrochemical applications

    Relationship between Household Dynamics, Biomass Consumption, and Carbon Emissions in Pakistan

    No full text
    Over the years, the household sector has become an important energy consumer and the main source of greenhouse gas (GHG) emissions. The rural household sector has significant potential for emission reduction due to its heavy reliance on traditional fuels and technologies. A great number of academic studies have been undertaken to analyze patterns of household energy and their determinants around the globe, particularly in developing countries. However, little is known about the association between household dynamics and patterns of energy (biomass vs. non-renewable) use. This study aims to analyze the relationship between different household dynamics, such as household size, income, climate, availability of resources, markets, awareness, consumption of energy, and carbon emissions. The study uses the STIRPAT model to investigate the impact of income, household size, housing dimensions, clean energy, and market accessibility on energy consumption. The findings of the study reveal that biomass energy accounts for the majority of household energy consumption and dung has the highest share in total household energy consumption (39.11%) The consumption of biomass increased with the size of the household and decreased with the level of income. A 1 kgoe increase in biomass consumption resulted in a 15.355 kg increase in CO2 emissions; on the other hand, a 1 kgoe increase in non-renewable-energy consumption resulted in just a 0.8675 kg increase in CO2 emissions. The coefficients of housing unit size, distance from the LPG market, and livestock were the primary determinants for choosing any fuel. Having knowledge of modern cookstoves, clean energy, and the environmental impact of fuels reduced the consumption of both energy sources. Furthermore, it was found that households with a greater reliance on biomass emitted higher quantities of carbon compared to those with a low reliance on biomass. Based on the results of the study, it can be stated that a reduction in the use of biomass and non-renewable energy is possible with adequate interventions and knowledge

    Attenuation Function Relationship for Far Field Earthquake Considered by Strike Slip Mechanism

    Get PDF
    An attenuation relationship for far field earthquakes considered by strike slip has been developed. The attenuation relationship function was develop using regression analysis. The database consisting of more than 130 peak ground accelerations from seven earthquake sources recorded by Seismology Station in Malaysia have been used to develop the relationship. This study aims to investigate the new relationship attenuation to gain exact peak ground acceleration at the location on site. Based on this study, the location is a structure located at Terengganu seaside

    Ground motion prediction equations for far field earthquake considered by strike slip fault mechanism

    No full text
    The ground motion prediction equation (GMPE) was developed using regression analysis. This estimation process needs to use a GMPE which provides peak ground acceleration (PGA) estimates incorporating a number of earthquake magnitude, distance and other seismic parameters. The database consisting of more than 35 PGA dataset from different earthquakes recorded by Seismology Station in Malaysia have been used to develop the relationship for this paper. This study aims to investigate the new relationship attenuation to gain exact peak ground acceleration at the location on site. In the Southern Asia region (Indonesia, Philippine and Malaysia) for example, there is significant hazard from earthquake along the strike slip fault
    corecore